

María Cristina López Areiza

Estudo das características de moduladores de amplitude fabricados com estruturas semicondutoras *InAIAs/InGaAs* e *AIGaAs/GaAs* MQW.

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

Orientadora: Patrícia Lustoza de Souza

Rio de Janeiro, fevereiro 16 de 2005

María Cristina López Areiza

Estudo das características de moduladores de amplitude fabricados com estruturas semicondutoras *InAlAs/InGaAs* e *AlGaAs/GaAs* MQW.

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

Prof^ª. Patrícia Lustoza de Souza Orientadora PUC-Rio Prof^a. Sandra Marcela Landi LabSem-CETUC-PUC PUC-Rio

Prof. Jean Pierre von der Weid PUC-Rio

Prof. Wagner Nunes Rodrigues UFMG Prof. Mauricio Pamplona Pires UFRJ

Prof. Gustavo Soares Vieira IFAV-CTA

Prof^a. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, fevereiro 16 de 2005

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

María Cristina López Areiza

Graduou-se em Física (1995) e fez Mestrado em Física com ênfase em Instrumentação (2000) na Universidade de Antioquia (Colômbia).

Ficha Catalográfica

Areiza, María Cristina López

Estudo das características de moduladores de amplitude fabricados com estruturas semicondutoras *InAIAs/InGaAs* e *AIGaAs/GaAs* MQW; orientadora: Patricia Lustoza de Souza. – Rio de Janeiro: PUC, Departamento de Engenharia Elétrica, 2004.

v., 172 f.: il. ; 29,7 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica.

Inclui referências bibliográficas.

1. Engenharia Elétrica – Teses. 2. Moduladores. 3. BPM. 4. Eletroabsorção. 5. Guias de onda. 6. InAIAs. 7. InGaAs. 8. GaAs. 9. AIGaAs. I. Souza, Patrícia Lustoza. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica . III. Título.

CDD: 621.3

A meus pais, Julio Oscar López Henao e Amanda de Jesús Areiza Peláez, A seus sonhos.

A Sergio Leon Montoya Castillo (el Tancho) pelo voto de confiança, apoio moral e sentimental

Agradecimentos

A Deus.

A minha orientadora a Professora Patrícia Lustoza de Souza e ao professor Mauricio Pamplona Pires, pela orientação e por tudo que me ensinaram.

À PUC-Rio e o CLAF, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Ao meus amigos e colegas de laboratório, Sandra Marcela Landi, Christiana Villas Boas Tribuzy, Artur López, Vinicius Miranda, Francis Guastavino e Marilene.

Ao Iracildo Oliveira, pela sua atenção, orientação e estar sempre nas horas mais difíceis do trabaho.

Ao Professor Jean Pierre Von der Weid, pela sua orientação e empréstimo de diferentes aparelhos.

À minha querida Amália Regina de Oliveira, pela sua companhia e incondicional ajuda.

Ao Professor Wagner Rodrigues, pela concessão do substrato de *GaAs* para o crescimento das amostra de *AlGaAs/GaAs*.

À Professora Maria Cristina Carvalho pelo empréstimo do *EDFA*. Ao professor Cláudio Lenz, por me permitir usar o laser sintonizável de Titânio-Safira e ao professor Newton Frateschi, por me ensinar novas maneiras de clivar as amostras semicondutoras.

Ao Giancarlo, por me ensinar a técnica para apontar a fibra óptica e ajuda no concerto de circuitos eletrônicos.

Aos meus amigos da alma Nelson Perez, Carmelina di Santis, César Rodriguez, Gladys Adriana Quintero, Sully Milena Mejía, Marina Ocampo, Márcia e Mercia Betânia, Jaime González, Julia, e todos aqueles que de uma ou outra forma participaram deste aprendizado... por todo seu apoio.

Aos professores que participaram da Comissão examinadora.

RESUMO

Areiza, Maria Cristina López, Lustoza de Souza, Patrícia **Estudo das** características de moduladores de amplitude fabricados com estruturas semicondutoras *InAIAs/InGaAs* e *AIGaAs/GaAs*. Rio de Janeiro, 2005. 172p. Tese de doutorado. Departamento de Engenharia Elétrica, Pontifícia Universidade Católica de Rio de Janeiro

No presente trabalho de tese, se faz uma avaliação de moduladores de amplitude baseados no efeito de electro-absorção. As estruturas usadas para a fabricação dos dispositivos foram estruturas com poços quânticos múltiplos de InAlAs/InGaAs e AlGaAs/GaAs. As estruturas de InAlAs/InGaAs foram projetadas para trabalhar na faixa comercial das telecomunicações (1.55 μm). Por isto a importância de aperfeiçoar os parâmetros de desempenho do dispositivo, tais como Stark shift, chirp, razão de contraste, perda por inserção, entre outros. Um estudo sistemático prévio destas estruturas foi realizado por Pires [Pires, 1998]. Ele propõe variar a concentração de gálio na liga para produzir uma leve tensão na estrutura e modificar desta forma as propriedades ópticas do material. O estudo de [Pires, 1998] propôs uma faixa de valores para variar a concentração de gálio (entre 46% e 52%) onde pode ser encontrada a melhor condição de operação do dispositivo. Cabe a esta tese aprofundar o estudo nesta faixa de valores, e decidir os parâmetros mais adequados para operação. No referente às estruturas de AlGaAs/GaAs, se toma como partida uma proposta teórica de [Batty et al, 1993], e estudada posteriormente por [Tribuzy, 2001], onde se sugere usar finas camadas de dopagem delta (δ) nos poços de GaAs para melhorar o deslocamento Stark em 87% para um campo aplicado de 40 kV/cm. O dispositivo foi desenhado e fabricado, obtendo-se um valor de 78% para o mesmo campo aplicado, resultado relevante, pois é a verificação experimental de uma proposta teórica.

Palavras-Chave

Moduladores de eletroabsorção, MQW, *AlGaAs/GaAs, InAlAs/InGaAs,* dispositivos opto-electrônicos, campo próximo.

ABSTRACT

Areiza, Maria Cristina López, Lustoza, de Souza Patrícia. Study of the characteristics of modulators of amplitude manufactured with semiconducting structures *InAlAs/InGaAs* and *AlGaAs/GaAs* MQW. Rio de Janeiro, 2005. 172p. PhD. Thesis. Department of Electrical Engineering, Pontifícia Universidade Católica de Rio de Janeiro

In this thesis work, is made an evaluation of modulators of amplitude based in the electrum-absorption effect. The structures used for the devices were multiple quantum wells of InAIAs/InGaAs and AIGaAs/GaAs. The structures of InAlAs/InGaAs are used to work in the commercial band of the telecommunications (1,55 μ m). This is the reason it is important to optimize the parameters of performance of the device, such as the Stark shift, chirp, contrast reason, insertion loss, etc. Previously, a systematic study of these structures was made by [Pires, 1998], the gallium concentration was varied to produce a strain in the structure and to modify the optic properties of the material. In the study of [Pires, 1998] considered the Gallium concentration was varied between 46% and 52% in which range the best condition to operate the device can be found. This is part of the work here presented. In this thesis this range of values was studied in more detail. For the structures of AlGaAs/GaAs, a theoretical proposal of [Batty et al, 1993] was experimentally investigated. It was suggested a nipi structure to use a fine delta doped (δ) in the GaAs wells, this delta doped will improve in 87% for a field of 40 KV/cm. The device was simulated and the Stark shift manufactured, obtaining a value of 78 % for the same field applied, this is a excellent result, because this confirm the theoretical prediction.

Keywords

Electroabsorption modulator, MQW, *AlGaAs/GaAs*, *InAlAs/InGaAs*, optolectronic devices, near field.

Sumário

Sumário		i
Lista de ⁻	Tabelas	iii
Listas de	Figuras	iv
1	Introdução	19
2	Fundamentação Teórica	25
2.1	Mecanismo de absorção em poços quânticos e efeito Stark quântico confinado	25
2.2	Efeito Stark em estruturas de poços quânticos com dopagem delta	28
2.3	Guias de onda dielétricos	31
2.4	Propagação em guias de onda dielétricos	34
2.5	Modulador	37
2.5.1	Características de Moduladores	38
2.5.1.1	Razão de contraste	39
2.5.1.2	Perda de inserção	40
2.5.1.3	Chirp	41
2.5.1.4	Capacitância	42
2.5.4.5	Figura de mérito	43
2.6	Modelo para estimar o coeficiente de absorção nas amostra: <i>AlGaAs/GaAs</i>	43
2.7	Modelo para estimar o coeficiente de absorção nas amostra:	61

3	Aspectos experimentais	50
3.1	Fotocorrente	51
3.2	Campo próximo	53
3.3	Transmissão	56
3.4	Processamento de guias de onda	57
4	Simulação teórica dos guias de onda	62
4.1	Parâmetros da simulação	66
4.2	Simulação da estruturas de InAlAs/InGaAs	67
4.3	Simulação da estruturas de AlGaAs/GaAs	72
5	Resultados relativos às estruturas AlGaAs/GaAs	78
5.1	Amostras crescidas	83
5.2	Fotocorrente	86
5.2.1	Medida do deslocamento Stark	87
5.3	Medida de	95
5.3.1	Medida de razão de contraste	96
5.3.2	Transmissão	99
5.4	Medida da perda por inserção	105
5.5	Figuras de mérito	106
5.6	Medida do <i>chirp</i>	108
5.7	Campo próximo	111
6.	Resultados relativos às estruturas InAIAs/InGaAs	118
6.1	Fotocorrente	126

6.1.1	Deslocamento Stark	131
6.1.2	Variação do coeficiente de absorção	132
6.1.3	Perda de inserção	134
6.1.4	Figuras de mérito	135
6.1.5	Parâmetro de chirp	138
6.2.	Campo próximo	139
6.2.1	Razão de contraste	143
7	Conclusões e trabalhos futuros	148
	Referências bibliograficas	152
	Apêndice A : Programa de campo próximo	161
	Apêndice B : Programa de Fotocorrente	165
	Apêndice C : Bases teórica do programa BeamProp	167

Lista de Tabelas

Tabela 4.1 – Cálculo do índice efetivo de refração da camada ativa, para	
diferentes valores da concentração de Alumínio	73
Tabela 5.1 – Propriedades estruturais das amostras de AlGaAs/GaAs estimadas	
a partir das medidas de raios X e o modelo de massa efectiva	85
Tabela 5.2 – Valor do coeficiente de absorção em cm ⁻¹ medido para a geometria	
perpendicular, para diferentes <i>detuning.</i>	104
Tabela 5.3 – (a) Figura de mérito ($\Gamma\Delta\alpha/F$) e (b) campo necessário para obter	
uma determinada razão de contraste (10,15 e 20 dB) para um <i>detuning</i> de	
operação de 40 meV para moduladores de <i>AlGaAs/GaAs</i>	107
Tabela 5.4 - Resultados do ajuste gaussiano realizado no spot do sistema de	
calibração	114
Tabela 5.5 – Medida da eficiência do acoplamento óptico em guias (Σ) de onda	
com diferente largura de mesa.	115
Tabela 5.6 – Valores em dB da perda por propagação em guias de onda, P_{guia} ,	
para diferentes larguras de mesa.	116
Tabela 6.1 – Parâmetros estruturais da amostra 297. T_p e T_b são $$ as larguras do	
poço e da barreira respectivamente,	122
Tabela 6.2 – Propriedades estruturais das amostras InAlAs/InGaAs	124
Tabela 6.3 – Absorção residual e perda de inserção estimadas para <i>detuning</i> de	
30 e 40 meV	134
Tabela 6.4 - Campo elétrico necessário para obter 10 e 15 dB de razão de	
contraste, para um <i>detuning</i> de 30 meV	135
Tabela 6.5 – Figura de mérito $\Gamma\Deltalpha/\Delta F$	136
Tabela 6.6 – Propriedades de acoplamento óptico dos guias de InAlAs/InGaAs	
para uma largura de mesa de 5µm	142

Lista de Figuras

Figura 1.1 – Amostras com degraus dentro do poço deser	nvolvidas para
maximizar o deslocamento Stark [Woodward et al, 1995]	21
Figura 2.1 – Esquema de um poço quântico típico de largura $L_0 e$	energia de <i>gap</i>
do material $E_{gp.}$ A energia do material da barreira é E_{gb} .	A diferença de
potencial das bandas de valência e condução são respecti	vamente ΔE_V e
ΔE _c	26
Figura 2.2 – Esquema do efeito de absorção em poços quá	ânticos em (a)
ausência e (b) presença do campo elétrico tranverso aplicado	o (Efeito Stark)27
Figura 2.3 – Esquema da estrutura <i>pin</i> utilizada para	a implementar
experimentalmente o efeito Stark	27
Figura 2.4 – Esquema da dopagem delta. De acima para baixo, a	primeira figura
representa um plano de dopagem. O segundo gráfico é a	distribuição da
carga atômica e os últimos dois gráficos correspondem a	ao campo e ao
potencial elétrico devido à dopagem	
Figura 2.5 – (a) Energia potencial numa estrutura nipi em função	o da posição da
dopagem delta. (b) Comparação do efeito da dopagem delta	na estrutura de
bandas. As funções de onda do estado fundamental do elétr	on e do buraco
também estão mostradas	
Figura 2.6 – Esquema de um guia de onda planar	
Figura 2.7 – Seção transversal de estruturas de canal: a) r	raised strip, b)
embedded strip, c) buried channel, d) guia rib, e) guia ridge	
Figura 2.8 – A figura (a) apresenta a geometria da estrutura utiliza	ida por Inoue <i>et</i>
al [Inoue et al, 1985]. Os resultados teóricos da perda por	inserção estão
apresentados em função: (b) da espessura da cavidade do	o guia e (c) da
razão entre o tamanho do <i>spot</i> na direção vertical e o tama	nho do <i>spot</i> na
fibra utilizada para o lanzamento de luz	
Figura 2.9 – Curva do fator de transmissão em função da	tensão reversa
aplicada. Na vizinhança do ponto S do gráfico, se apresenta	a uma pequena
linearidade que pode ser utilizada para efeito de modulaçã	o de amplitude
de pequenos sinais	

Figura 2.10 – Esquema da perda de inserção e razão de contraste num
modulador típico em função da diferença de potencial reversa aplicada
Figura 2.11 – Ajuste teórico da curva de fotocorrente em função da energia para
uma amostra de AlGaAs/GaAs, sem tensão externa aplicada45
Figura 2.12 – Espectro de transmissãode uma amostras de AlGaAs/GaAs em
função do comprimento de onda em μ m. As linhas contínuas e tracejadas
correspondem à medida experimental e ajuste teórico, respectivamente
Figura 2.13 – Coeficiente de absorção em função do comprimento de onda para
uma amostra de <i>AlGaAs/GaAs</i> 47
Figura 2.14 – Espectro de transmissão da amostra de InAlAs/InGaAs número
661 em função da energia48
Figura 2.15 – Curvas de fotocorrente e transmissão para Δ V=0 da amostra de
InAlAs/InGaAs número 661 em unidades arbitrárias em função da energia
Figura 2.16 – Curva de fotocorrente para Δ V=0 da amostra de InAlAs/InGaAs
número 661 em unidades absolutas em função da energia
Figura 3.1 – Configuração da experiência de fotocorrente51
Figura 3.2 – Geometria de lentes utilizada para o acoplamento do feixe de luz
nos guias de onda52
Figura 3.3 – Circuito usado para polarizar o dispositivo e cortar o sinal DC
Figura 3.4 – Geometria de campo próximo e de campo distante. O plano da
imagem está paralelo ao plano xy. z é o eixo de propagação do campo53
Figura 3.5 – Esquema da experiência usada para medir o campo próximo em
guias de onda54
Figura 3.6 – Desenho lateral do suporte da amostra55
Figura 3.7 – Foto dos componentes usados na medida de campo próximo
Figura 3.8 – Geometria da montagem da medida da tarnsmissão
Figura 3.9 – Curva de calibração para corrosão de AlGaAs/GaAs60
Figura 3.10 – Curva de calibração para corrosão de InAlAs/InGaAs60
Figura 3.11 – Máscaras utilizadas no processamento de guias de onda61
Figura 4.1 – Parâmetros geométricos considerados na simulação <i>Beam</i>
Propagation Method (BPM)62
Figura 4.2 – Parâmetros geométricos variados na simulação BPM. O valor do
<i>slab</i> é zero quando a corrosão chega até o substrato. Quando não se
realiza nenhuma corrosão o valor do <i>slab</i> é máximo, esta condição
corresponde a um guia de onda planar63

Figura 4.3 – Exemplo do computo espectral dos modos. A figura mostra	
potência relativa em função da constante de propagação	65
Figura 4.4 – Cálculo espectral dos modos confinados no guia de AlGaAs/GaAs	
desenhado para esta tese	67
Figura 4.5 – Esquema da estrutura proposta para fabricar guias de	
InAIAs/InGaAs.	68
Figura 4.6 – Variação da potência total normalizada em função do slab	69
Figura 4.7 – Variação da potência total normalizada em função da largura de	
mesa do guia de onda	70
Figura 4.8 – Cálculo da potência relativa dos modos confinados no guia de onda	
em função da constante de propagação de cada modo	71
Figura 4.9 – Cálculo do modo fundamental TE em InAlAs/InGaAs	71
Figura 4.10 – Perfil 3D do modo fundamental TE em guias de onda de	
InAlAs/InGaAs, com largura de mesa de 5 μ m e slab igual a zero	72
Figura 4.11 – Estrutura proposta por Dong et al para cavidade óptica de laser	
[Dong <i>et al ,</i> 1994]	72
Figura 4.12 – Esquema da estrutura proposta para fabricar guias de	
AlGaAs/GaAs	74
Figura 4.13 – Variação da potência total relativa em função da largura de mesa	
para guias de onda de <i>AlGaAs/GaAs</i>	75
Figura 4.14 – Variação da potência total relativa em função do s <i>lab</i> para guias de	
onda de AlGaAs/GaAs	75
Figura 4.15 – Cálculo espectral dos modos.propagados no guia de AlGaAs/GaAs	76
Figura 4.16 – Cálculo do modo fundamental TE em AlGaAs/GaAs	77
Figura 4.17 – Perfil 3D do modo fundamental TE em AlGaAs/GaAs	77
Figura 5.1 – (a) Esquema que ilustra a posição da dopagem delta no poço (linha	
tracejada) e na barreira (linha contínua). (b) Forma do potencial depois de	
introduzir a dopagem	78
Figura 5.2 – Densidade de buracos na banda de valência em função da posição	80
Figura 5.3 –Fotocorrente das amostras 713 e 714, com dopagem $n = +20\% p$	
e $n = +\%10 p$ respectivamemte. Medida realizada com incidência de luz	
perpendicular. O deslocamento S $tark$ ($ riangle$ S) é estimado para uma diferença	
de potencial de 4 volts	81

Figura 5.4 – Calibração da concentração da dopagem delta em função do fluxo...... 82

Figura 5.5 – Esquema da estrutura <i>nipi</i> de <i>AlGaAs/GaAs.</i> As linhas pontilhadas	
indicam a posição da dopagem delta nas diferentes camadas	
Figura 5.6 – Relação teórica da energia de transição <i>e1-hh1</i> (E _g) em função da	
largura do poço das estruturas AlGaAs/GaAs estimada com o modelo de	
massa efetiva	
Figura 5.7 – (a) Incidência da luz no plano das camadas epitaxiais, geometria	
usada em guias de onda e (b) Incidência da luz de forma transversal às	
camadas epitaxiais	
Figura 5.8 – Deslocamento Stark teórico das amostras AlGaAs/GaAs em função	
do campo elétrico aplicado. O valor L_p que se encontra acima de cada linha	
corresponde ao valor da largura do poço considerado para cada cálculo	
Figura 5.9 - Fotocorrente no plano das estruturas de AlGaAs/GaAs: (a) com	
dopagem delta e (b) sem dopagem delta. Medidas realizadas com luz	
despolarizada a 300 K	89
Figura 5.10 – Fotocorrente na geometria no plano e perpendicular às estruturas	
de AlGaAs/GaAs (a) sem dopagem delta e (b) com dopagem delta.	
Medidas realizadas com luz despolarizada a 300 K	
Figura 5.11 – Medida de fotocorrente em função da energia para as diferentes	
geometrias, realizadas para ilustrar o efeito da polarização na estrutura	
AIGaAs/GaAs sem dopagem delta	91
Figura 5.12 – Medida de fotocorrente em função da energia para as diferentes	
geometrias, realizadas para ilustrar o efeito da polarização na estrutura	
AIGaAs/GaAs com dopagem delta	91
Figura 5.13 – Deslocamento Stark em função do campo elétrico aplicado para	
vários guias de onda de AlGaAs/GaAs, considerando luz despolarizada	
Figura 5.14 – Razão entre o deslocamento Stark entre a amostra nipi de	
AlGaAs/GaAs e o deslocamento Stark nas amostras sem delta em função	
do campo elétrico aplicado	
Figura 5.15 – Deslocamento Stark médio calculado a partir da fotocorrente das	
amostras de <i>AlGaAs/GaAs</i> na geometria paralela em função do campo	
elétrico aplicado	
Figura 5.16 – Deslocamento <i>Stark</i> em função do campo elétrico aplicado medido	
a partir da fotocorrente na geometria perpendicular	
Figura 5.17 – Razão de contraste medida em função da tensão reversa aplicada	
em guias com diferentes larguras de mesa e 250 μ m de comprimento	

Figura 5.18 – $\Delta \alpha$ na geometria paralela em unidades absolutas em função da	
tensão reversa aplicada para AlGaAs/GaAs , com largura de mesa $$ W=7 $_{\mu}$ m	
e <i>detuning</i> de 40 meV	
Figura 5.19 – Relação entre as energias do <i>gap</i> dos materiais usados para	
fabricar a estrutura de <i>AlGaAs/GaAs</i>	
Figura 5.20 – Espectros de transmissão das amostras (a) com dopagem delta e	
(b) referência em função do comprimento de onda em μ m	100
Figura 5.21 – Janela do programa <i>Spectrum,</i> o qual foi utilizado para realizar o	
ajuste da curva teórica de fotocorrente	101
Figura 5.22 – Ajuste teórico das curvas da fotocorrente perpendicular para	
amostras (a) com dopagem delta e (b) sem dopagem delta em função da	
energia	102
Figura 5.23 – Espectros de transmissão das amostras (a) com dopagem delta e	
(b) referência em função do comprimento de onda em μm	103
Figura 5.24 – Coeficiente de absorção (cm ⁻¹) em (a) amostra com dopagem delta	
e (b) sem dopagem delta em função do comprimento de onda (μ m)	
estimado mediante o ajuste da curva de transmissão	103
Figura 5.25 – $\Delta \alpha$ calculada a partir da fotocorrente perpendicular em função da	
tensão reversa aplicada nas amostras de <i>AlGaAs/GaAs</i>	104
Figura 5.26 – Fotocorrente medida na geometria paralela em função da energia.	
Medida realizada com luz polarizada	105
Figura 5.27 – PI em função da tensão reversa aplicada, para <i>detuning</i> de 40	
meV, com um comprimento de guia de 250 μ m e Γ =0.077	106
Figura 5.28 – Parâmetro de chirp calculado a partir das medidas de fotocorrente	
na geometria paralela e perpendicular para amostra (a) sem dopagem delta	
e (b) com dopagem delta em função do campo aplicado	109
Figura 5.29 – Exemplo de cálculo teórico de $\Delta \alpha$ para amostras de InGaAs/GaAs	
em função do comprimento de onda de operação	110
Figura 5.30 – Estrutura <i>nipi</i> proposta para fazer os moduladores de	
AlGaAs/GaAs com dopagem delta na camada ativa	112
Figura 5.31 – Perfil gaussiano (a) teórico e (b) experimental de um guia de onda	
fabricado com a estrutura 819. Usa-se uma largura de mesa de 5 μ m	113
Figura 5.32 – Sistema de calibração do campo próximo e o tamanho do spot	113
Figura 5.33 – Fator de confinamento óptico em guias de onda em função da	
largura de mesa	117
Figura 6.1 – Energia do <i>gap</i> em função do parâmetro de rede	118

Figura 6.2 – Estrutura básica das amostras <i>InAlAs/InGaAs</i> . Os valores T _p e T _b
correspondem à largura do poço e da barreira, respectivamente 120
Figura 6.3 – Largura dos poços em função da concentração de gálio na liga
InGaAs calculada para diferentes energias de transição121
Figura 6.4 – (a) Parâmetro de <i>chirp</i> e (b) $\Delta lpha$ para a amostra 297 em função do
campo elétrico
Figura 6.5 – Largura do poço em função da concentração de gálio na liga
InGaAs. Os números nos retângulos correspondem às amostras novas
crescidas para esta tese 123
Figura 6.6 – Esquema da amostra 665. Para as outras amostras de
InAlAs/InGaAs tais como 664, 661, 657 e 653, muda a espessura da região
ativa, pois as amostras diferem nas larguras de poço e barreira
Figura 6.7 – Geometria da fotocorrente perpendicular e no plano 126
Figura 6.8 – Espectro de fotocorrente em função da energia da amostra 665, nas
diferentes geometrias, para uma diferença de potencial zero 127
Figura 6.9 – Espectro de fotocorrente da amostra 653, nas diferentes
geometrias, para uma diferença de potencial zero128
Figura 6.10 – Espectro de fotocorrente da amostra 657, nas diferentes
geometrias, para uma diferença de potencial zero129
Figura 6.11 – Espectro de fotocorrente da amostra 661, nas diferentes
geometrias, para uma diferença de potencial zero129
Figura 6.12 – Espectro de fotocorrente da amostra 664, nas diferentes
geometrias, para uma diferença de potencial zero130
Figura 6.13 – Deslocamento Stark medido a partir da fotocorrente na geometria
perpendicular de amostras de InAlAs/InGaAs131
Figura 6.14 – Valor de $\Delta lpha$ (cm ⁻¹) em função do campo aplicado estimada a partir
da fotocorrente perpendicular das amostras de InAlAs/InGaAs para um
<i>detuning</i> de 30 meV133
Figura 6.15 – Mesmo gráfico da figura 6.5, onde os números das amostras foram
substituídos pelo valor da perda por inserção para um <i>detuning</i> de 30meV
Figura 6.16 – Mesmo gráfico da figura 6.5, onde os números das amostras foram
substituídos pelo valor do campo elétrico necessário para obter 10 dB de
razão de contraste e <i>detunnig</i> de 30 meV136
Figura 6.17 – Mesmo gráfico da figura 6.5, onde os números das amostras foram
substituídos pelo valor da figura de mérito $\Gamma\Deltalpha/\Delta F$ para obter 10 dB de

razão de contraste com um <i>detunnig</i> de 30 meV. A região sombreada é a	
região onde se obteve a melhor condição de operação do dispositivo	137
Figura 6.18 – Parâmetro de chirp (α_L) calculado a partir das curvas de	
fotocorrente perpendicular das amostras de InAlAs/InGaAs e comparados	
com o parâmetro de <i>chirp</i> das estruturas 296 e 297, para um <i>detuning</i> de 30	
meV	138
Figura 6.19 – Geometria da estrutura de InAIAs/InGaAs utilizada para fabricar os	
dispositivos desta tese	139
Figura 6.20 – Perfil dos guias após a corrosão com (a) W=7 μ m e (b) W=3 μ m	140
Figura 6.21 – Imagem de MEV dos guias processados depois da deposição de	
polimida	140
Figura 6.22 – Perfil 3D do campo próximo do guia de onda 665	141
Figura 6.23 - Imagens da intensidade do campo (a) experimental e (b) teórico	
medidas na face de saída do guia	141
Figura 6.24 – Medida de razão de contraste nos guias de InAlAs/InGaAs em	
função da tensão aplicada para luz despolarizada	144
Figura 6.25 – Simulação da propagação de diferentes modos existentes na	
cavidade óptica da estrutura mostrada na figura 6.18	145
Figura 6.26 - Cálculo espectral dos modos existentes na cavidade óptica da	
estrutura (a) 661 e (b) 665 em função da constante de propagação dos	
modos	146